High-Resolution Transmission Electron Microscopy of Nanoparticles and Nanotubes

Statement of Work

SCOPE: NASA Langley Research Center has a need to analyze nanoparticles and nanotubes

produced by various methods including chemical synthesis and chemical vapor deposition. The

service required to analyze these nanoparticles and nanotubes consists of high-resolution

transmission electron microscopy (HR-TEM) for structural analysis, and in-situ energy

dispersive spectroscopy for chemical analysis (EDS).

REQUIREMENT: The HR-TEM analyses shall have a point resolution of 0.23 nm, lattice

resolution of 0.1 nm, and STEM (scanning TEM) resolution of 2 nm. The analyses shall have a

5-axes microactive goniometer stage with specimen tilting capability of $\pm 35^{\circ}$ on the X direction

and $\pm 30^{\circ}$ on the Y direction. The various modes of operation shall include bright field imaging,

dark field imaging, selected area diffraction, nano-beam diffraction, and STEM. Analyses shall

require EDS with in situ chemical analysis using point analysis, line analysis, and elemental

mapping modes. The estimated total number of nanoparticles and nanotubes samples for HR-

TEM characterization will be 60 samples, 30 of these samples will also be characterized using

EDS.

GOVERNMENT PROVIDED SAMPLES: Sample preparation shall be conducted by a

NASA Langley Research Center representative and the samples shall be mounted on 3-mm

transmission electron microscopy grids. The representative shall consult with the contractor on

best methodologies to acquire HR-TEM images and EDS data. It is required that a technical

representative from the NASA Langley Research Center be present during these analyses.

DELIVERABLE: The results shall be provided to NASA as images and spectra in digital

format.

PERIOD OF PERFORMANCE: One (1) year from date of award